Abstract

Dynamic Thermal Rating (DTR) allows optimum electric power line rating use. It is an intelligent grid technology predicting changes in line rating due to changing physical and environmental conditions. This study performed a meta-analysis of DTR forecasting methods by classifying the methods, implementing them, and comparing their outputs for a 24hr forecast lead time. It implemented deep learning methods of Recurrent Neural Network (RNN), Ensemble Means forecasting and Convolution Neural Network (CNN). RNN uses the initial outcome of a specific neural network layer as feedback to the network to predict the layer’s outcome. Ensemble Means forecasting is a Monte-Carlo simulation process producing random, equally viable forecasting solutions. On the other hand, CNN uses unsupervised learning to predict features with minimal errors. This survey systematically implements Quantile Regression (QR), RNN, CNN and Ensemble means forecasting. Point error metrics and probabilistic error metrics of sharpness, skill, and bias were used in the methods’ evaluation. All methods tested prove to be efficient, but 50th percentile QR appears more conservative, secure and less error-prone. It achieved between 35% - 45% line capacity utilization over the Static Thermal Rating (STR). On average, judging by the error metrics of all methods, 50th percentile quantile regression proves highly reliable and provides a better conviction in our choice of DTR forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.