Abstract

The dynamic testing method (DTM) has been shown to accurately characterize the electromagnetic model of permanent magnet synchronous machines by describing the relationship between the phase currents and the linked magnetic flux with minimal amount of test equipment as compared with traditional methods. Within this paper, a performance evaluation of the DTM applied to a synchronous reluctance machine is presented. This paper discusses the challenges of a dynamic test of a nonlinear synchronous machine and suggests a fuzzy proportional, derivative and integral controller (PD + I) controller for improved control performance and measurements. Finally, the DTM measurements are compared with the results of the constant speed method (CSM). The CSM measurements of flux linkage and torque curves confirm the validity of the DTM measurements for this machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.