Abstract

The vibrational frequency method was used to measure the elastic modulus of laminated veneer lumber (LVL), and the feasibility of using Weibull distribution to analyze the elastic modulus data of LVL was considered. Samples were randomly selected as test pieces at the factory. The sponge support structure was used to realize the free beam state, and the modal test results verified the accuracy of realizing the free beam. Under transient excitation, the elastic modulus of the specimen was obtained by testing the first-order bending frequency. The Weibull distribution fitting test, Weibull distribution K-S test, and normal distribution K-S test were used for the test data. The probability of LVL elastic modulus was calculated under a given value. The results showed that the LVL elastic modulus did not obey the two-parameter Weibull distribution (Eu=0). The LVL elastic modulus fit to the three-parameter Weibull distribution (Eu) was greater than half of the minimum test value and the normal distribution. When 9 GPa and 8 GPa were used as the setting values of Eu, the calculated probability value was relatively stable. At this time, Eu was 81% and 92% of the minimum elastic modulus 9.815 GPa. Therefore, it was recommended to use 80% to 90% of the minimum value of the measured data as the setting value of the position parameter Eu. The three-parameter Weibull distribution and the normal distribution calculated LVL elastic modulus have the same probability under the given value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.