Abstract

Abstract Assessing the influence of therapeutic formulations on biophysical properties of lung surfactant is an essential step in optimal design of pharmaceutical products intended for inhalation. In the present study, maximum bubble pressure (MBP) tensiometry was employed to evaluate the physicochemical impact of several novel multifunctional composite powders, suitable for drug delivery by inhalation, on the dynamic activity of model pulmonary surfactant at the air–water interface. Bi- and tri-component powders consisted of mannitol or dextran, N-acetylcysteine and disodium cromoglycate were obtained by spray drying technique and subsequently their interaction with modified bovine surfactant extract (Survanta) were analysed. Several dynamic surface tension parameters were investigated as measures of alteration of surface activity in Survanta-powder solutions. All discussed powders demonstrated significant impact on surface activity of Survanta solution, either positive or negative, depending on powders composition and concentration. Although it is problematic to explain all observed effects in the framework of known mechanisms, the present study provides a new insight into the possible changes in the dynamic interfacial behaviour of pulmonary surfactant after therapeutic interventions. Obtained results may be applied during development of more effective and safe medical products suitable for drug delivery by inhalation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.