Abstract

Split Hopkinson pressure bar technique has been widely used to measure the dynamic tensile strength of concrete materials. Most experimental results show that the tensile strength of concrete material increases with strain rates. However, the dynamic tensile strength derived from the split Hopkinson pressure bar test is affected by lateral inertia confinement, which may lead to the overestimation of dynamic mechanical properties of concrete materials. The true dynamic characteristics of concrete materials are not actually shown by experimental data. It is impossible to completely eliminate the influence of lateral inertia confinement in split Hopkinson pressure bar tests. In this study, a rate-insensitive material model is used in commercial finite element software to study how the lateral inertia confinement affects the dynamic tensile strength of concrete material at strain rates between 30/s and 150/s. Comparison of finite element results and split Hopkinson pressure bar test results shows that the dynamic tensile strength enhancement of concrete materials is strongly influenced by the inertial effect. The dynamic increase factor of concrete materials which remove the influence of lateral inertia confinement in split Hopkinson pressure bar tests can reflect the true dynamic characteristics of concrete materials. It is also found that the influence of lateral inertia confinement is related to the size of the specimen.

Highlights

  • Concrete is widely used in both civil engineering and military facilities

  • It is commonly agreed that the dynamic increase factor (DIF), defined as the ratio of dynamic strength to static strength, of tensile strength of concrete material increases with the increase in strain rate

  • The enhancement of dynamic tensile strength of concrete material is widely considered as material property, called the strain rate effect

Read more

Summary

Introduction

Concrete is widely used in both civil engineering and military facilities. During their service life, they might be subjected to shock loading such as blast and impact. The enhancement of dynamic tensile strength of concrete material is widely considered as material property, called the strain rate effect.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.