Abstract

This paper is concerned with the dynamic tensile characteristics of transformation-induced plasticity (TRIP)-type and dual phase (DP)-type steel sheets at intermediate strain rates ranging from 0.003 to 200 s −1. The dynamic responses of TRIP600, TRIP800, DP600 and DP800 steel sheets are investigated with the evaluation of stress–strain curves, the strain rate sensitivity, the fracture elongation and the effect of pre-strain. The dynamic responses were acquired from dynamic tensile tests at the intermediate strain rates with a high-speed material testing machine developed. Experiments were carried out with specimens whose dimensions were carefully determined by finite element analyses and experiments to induce uniform deformation in the gauge section at the intermediate strain rates. The tensile tests provide stress–strain curves and the strain rate sensitivity. Experimental results show two important aspects for TRIP-type and DP-type steel sheets quantitatively: The flow stress increases as the strain rate increases and the fracture elongation and the formability of TRIP-type sheets are better than those of DP-type sheets at the intermediate strain rates. The pre-strain effect was also investigated for two types of metals at the intermediate strain rates. TRIP600 and DP600 steel specimens pre-stained by 5% and 10% were elongated at the strain rate of 0.003 s −1 for quasi-static loading, and then tested at strain rates of 0.003, 1, 10 and 100 s −1. The results demonstrate that the mechanical properties of TRIP600 and DP600 steels are noticeably influenced by the pre-strain when the strain rate is over 1 s −1. The ultimate tensile strength as well as the yield stress increases due to the pre-strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.