Abstract

Dynamic time division duplex (D-TDD) dynamically allocates the transmission directions for traffic adaptation in each cell. D-TDD systems are receiving a lot of attention because they can reduce latency and increase spectrum utilization via flexible and dynamic duplex operation in 5G New Radio (NR). However, the advantages of the D-TDD system are difficult to fully utilize due to the cross-link interference (CLI) arising from the use of different transmission directions between adjacent cells. This paper is a survey of the research from academia and the standardization efforts being undertaken to solve this CLI problem and make the D-TDD system a reality. Specifically, we categorize and present the approaches to mitigating CLI according to operational principles. Furthermore, we present the signaling necessary to apply the CLI mitigation schemes. We also present information-theoretic performance analysis of D-TDD systems in various environments. As topics for future works, we discuss the research challenges and opportunities associated with the CLI mitigation schemes and signaling design in a variety of environments. This survey is recommended for those who are in the initial stage of studying D-TDD systems and those who wish to develop a more feasible D-TDD system as a baseline for reviewing the research flow and standardization trends surrounding D-TDD systems and to identify areas of focus for future works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.