Abstract

In recent years, it is a trend to integrate the ideas in game theory into the research of multi-robot system. In this paper, a team-competition model is proposed to solve a dynamic multi-robot task allocation problem. The allocation problem asks how to assign tasks to robots such that the most suitable robot is selected to execute the most appropriate task, which arises in many real-life applications. To be specific, we study multi-round team competitions between two teams, where each team selects one of its players simultaneously in each round and each player can play at most once, which defines an extensive-form game with perfect recall. We also study a common variant where one team always selects its player before the other team in each round. Regarding the robots as the players in the first team and the tasks as the players in the second team, the sub-game perfect strategy of the first team computed via solving the team competition gives us a solution for allocating the tasks to the robots—it specifies how to select the robot (according to some probability distribution if the two teams move simultaneously) to execute the upcoming task in each round, based on the results of the matches in the previous rounds. Throughout this paper, many properties of the sub-game perfect equilibria of the team competition game are proved. We first show that uniformly random strategy is a sub-game perfect equilibrium strategy for both teams when there are no redundant players. Secondly, a team can safely abandon its weak players if it has redundant players and the strength of players is transitive. We then focus on the more interesting case where there are redundant players and the strength of players is not transitive. In this case, we obtain several counterintuitive results. For example, a player might help improve the payoff of its team, even if it is dominated by the entire other team. We also study the extent to which the dominated players can increase the payoff. Very similar results hold for the aforementioned variant where the two teams take actions in turn.

Highlights

  • In the past two decades, intelligent multi-robot systems are more and more widely used in industrial manufacturing, agriculture, hospital, fire rescue, cargo handling, entertainment, and many other places

  • We study a novel game-theoretic model of situations where two teams make sequential decisions about which of a set of exhaustible actions to select in each round

  • These actions can be interpreted as team members, cards in a hand, etc. This model has applications in solving the Dynamic Multi-Robot Task Allocation (DMRTA) problem we introduced at the beginning of this paper

Read more

Summary

Introduction

In the past two decades, intelligent multi-robot systems are more and more widely used in industrial manufacturing, agriculture, hospital, fire rescue, cargo handling, entertainment, and many other places. One of the primary problem that occurs to the designer of multi-robot systems is how to assign tasks to robots such that the most suitable robot is selected to execute the most appropriate task, which is usually referred to as the task allocation problem and which arises in all kinds of real-life applications. It is well-known that game theory lays the mathematical foundation for the research of collaboration in multi-robot system, and it is a trend to integrate the ideas and theoretical results in game theory into the research of multi-robot system. A teamcompetition model, which is of interest by itself in game theory, is proposed to solve a Dynamic Multi-Robot Task Allocation (DMRTA) problem

Objectives
Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.