Abstract

SUMMARYIn this paper, a dynamic task allocation and controller design methodology for cooperative robot teams is presented. Fuzzy-logic-based utility functions are derived to quantify each robot's ability to perform a task. These utility functions are used to allocate tasks in real time through a limited lookahead control methodology partially based on the basic principles of discrete event supervisory control theory. The proposed controller design methodology accommodates flexibility in task assignments, robot coordination, and tolerance to robot failures and repairs. Implementation details of the proposed methodology are demonstrated through a warehouse patrolling case study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.