Abstract

Target tracking in forward-looking infrared (FLIR) video sequences is a challenging problem because of various limitations such as low signal-to-noise ratio (SNR), image blurring, partial occlusion, and low texture information, which often leads to missing targets or tracking nontarget objects. To alleviate these problems, we developed a novel algorithm that involves local-deviation-based image preprocessing as well as fringe-adjusted joint-transform-correlation--(FJTC) and template-matching--(TM) based target detection and tracking. The local-deviation-based preprocessing technique is used to suppress smooth texture such as background and to enhance target edge information. However, for complex situations such as the target blending with background, partial occlusion of the target, or proximity of the target to other similar nontarget objects, FJTC may produce a false alarm. For such cases, the TM-based detection technique is used to compensate FJTC breaking points by use of cross-correlation coefficients. Finally, a robust tracking algorithm is developed by use of both FJTC and TM techniques, which is called FJTC-TM technique. The performance of the proposed FJTC-TM algorithm is tested with real-life FLIR image sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.