Abstract
This study proposes an image-based visual servoing (IBVS) method based on a velocity observer for an unmanned aerial vehicle (UAV) for tracking a dynamic target in Global Positioning System (GPS)-denied environments. The proposed method derives the simplified and decoupled image dynamics of underactuated UAVs using a constructed virtual camera and then considers the uncertainties caused by the unpredictable rotations and velocities of the dynamic target. A novel image depth model that extends the IBVS method to track a rotating target with arbitrary orientations is proposed. The depth model ensures image feature accuracy and image trajectory smoothness in rotating target tracking. The relative velocities of the UAV and the dynamic target are estimated using the proposed velocity observer. Thanks to the velocity observer, translational velocity measurements are not required, and the control chatter caused by noise-containing measurements is mitigated. An integral-based filter is proposed to compensate for unpredictable environmental disturbances in order to improve the anti-disturbance ability. The stability of the velocity observer and IBVS controller is analyzed using the Lyapunov method. Comparative simulations and multistage experiments are conducted to illustrate the tracking stability, anti-disturbance ability, and tracking robustness of the proposed method with a dynamic rotating target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.