Abstract
Remote exploitation attacks use software vulnerabilities to penetrate through a network of Internet of Things (IoT) devices. This work addresses defending against remote exploitation attacks on vulnerable IoT devices. As an attack mitigation strategy, we assume it is not possible to fix all the vulnerabilities and propose to diversify the open-source software used to manage IoT devices. Our approach is to deploy dynamic cloud-based virtual machine proxies for physical IoT devices. Our architecture leverages virtual machine proxies with diverse software configurations to mitigate vulnerable and static software configurations on physical devices. We develop an algorithm for selecting new configurations based on network anomaly detection signals to learn vulnerable software configurations on IoT devices, automatically shifting towards more secure configurations. Cloud-based proxy machines mediate requests between application clients and vulnerable IoT devices, facilitating a dynamic diversification system. We report on simulation experiments to evaluate the dynamic system. Two models of powerful adversaries are introduced and simulated against the diversified defense strategy. Our experiments show that a dynamically diversified IoT architecture can be invulnerable to large classes of attacks that would succeed against a static architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Autonomous and Adaptive Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.