Abstract

In this work, a dynamic switching based fuzzy controller combined with spectral method is proposed to control a class of nonlinear distributed parameter systems (DPSs). Spectral method can transform infinite-dimensional DPS into finite ordinary differential equations (ODEs). A dynamic switching based fuzzy controller is constructed to track reference values for the multi-inputs multi-outputs (MIMO) ODEs. Only a traditional fuzzy logic system (FLS) and a rule base are used in the controller, and membership functions (MFs) for different ODEs are adjusted by scaling factors. Analytical models of the dynamic switching based fuzzy controller are deduced to design the scaling factors and analyze stability of the control system. In order to obtain a good control performance, particle swarm optimization (PSO) is adopted to design the scaling factors. Moreover, stability of fuzzy control system is analyzed by using the analytical models, definition of the stability and Lyapunov stability theory. Finally, a nonlinear rod catalytic reaction process is used as an illustrated example for demonstration. The simulation results show that performance of proposed dynamic switching based fuzzy control strategy is better than a multi-variable fuzzy logic controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call