Abstract
Chemical warfare agents (CWAs) pose a threat as gaseous substances and as liquid aerosols, necessitating chemical warfare-protective clothing for soldiers. The paramount consideration lies in the effectiveness of the clothing as a barrier against the pertinent CWAs. This paper presents a dynamic swatch test method aimed at evaluating the performance of such clothing against liquid-phase aerosol penetration. Central to the methodology is a specialized test cell designed to rotate to the left and right, integrated within a laboratory wind tunnel, replicating mission-relevant conditions with varying wind speeds. Utilizing di(2-ethylhexyl) sebacate particles as liquid aerosols, tests were conducted at wind speeds of 1.0, 3.0, and 5.0 m/s. Penetration assessment relied on analyzing particle counts downstream and upstream of the fabric, with preliminary studies showing that higher wind speeds and fabric air permeabilities increase penetration at an equivalent face velocity of 5.0 cm/s. Interestingly, penetration decreased when fabric samples were subjected to rotation. The system and methodology devised demonstrated consistent and repeatable results, offering valuable insights into optimizing the effectiveness of chemical warfare-protective clothing. This research contributes to advancing methodologies for testing protective clothing, crucial for ensuring the safety of military personnel in hazardous environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.