Abstract

Dynamic diffraction gratings (DDGs) are considered as one of the most promising technologies for application in smart optical devices because of their in situ dynamic regulation of light propagation on demand; however, it is still a challenge to fabricate dynamic periodic micro/nanostructures due to limited materials and processes. Here, a facile and feasible strategy to construct a near-infrared (NIR) radiation-driven DDG is developed based on a double-sided surface pattern, which is fabricated by dynamic wrinkles and/or soft-imprinted static wrinkles. Poly(dimethylsiloxane) (PDMS) containing carbon nanotubes (CNTs) serves as the substrate, and wrinkles are formed on both sides. The resulting double-sided wrinkle pattern can be used as a DDG to generate various adjustable two-dimensional (2D) diffraction patterns driven by NIR light. Furthermore, with various combinations of wrinkles, we demonstrated a single-sided responsive DDG and a double-sided responsive DDG to realize the evolution of diffraction patterns from 2D to one-dimensional (1D) and 2D to zero-dimensional (0D), respectively. The results provide an alternative for DDGs that will have wide applications in smart display, sensing, and imaging systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call