Abstract
This study analyzes the equilibrium and dynamic surface tension curves of acidic and lactonic sophorolipids (SLs). It also investigates the dilational properties of the surface adsorptive film. Given their high hydrophobicity, lactonic SLs have lower surface tension and critical micelle concentration (CMC) than acidic SLs. As cNaCl increases, the CMC values and the corresponding surface tension (γcmc) of acidic and lactonic SLs decrease gradually. For dynamic surface properties, lactonic SLs have a high diffusive rate from the bulk phase to the subsurface. At 0.05 CMC, the initial adsorption of acidic and lactonic SLs is diffusion-controlled. As csurfactant increases, the values of diffusion coefficient (D) show a downward trend, and the mechanism is mixed kinetic diffusion. Adding NaCl increases the D values of acidic and lactonic SLs, and the influence degree for acidic SLs is more considerable than that for lactonic SLs.As frequency (ω) increases (0.005∼0.5 Hz), the dilational elasticity increases, and the phase angle decrease. The dilational elasticity of acidic and lactonic SLs shows a low-frequency dependence. Compared with acidic SLs, lactonic SLs have better dynamic surface properties, which decrease the gradient of interfacial tension because of the interface deformation. Consequently, the lactonic SLs exhibit a relatively small dilational elasticity. At 0.1 Hz, the dilational elasticity of acidic and lactonic SLs reaches the maximum values at 0.05CMC and 0.075CMC, respectively. When csurfactant rises near CMC, the phase angle increases obviously, and the dilational elasticity further decreases. This result is attributed to the fast exchange of surfactant molecules between the interface and the micelles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.