Abstract

Dynamic pattern formations are commonly observed in multicellular systems, such as cardiac tissue and slime molds, and modeled using reaction-diffusion systems. Recent experiments have revealed dynamic patterns in the concentration profile of various cortical proteins at a much smaller scale, namely, embryos at their single-cell stage. Spiral waves of Rho and F-actin proteins have been reported in Xenopus frog and starfish oocytes [Bement et al., Nat. Cell Biol. 17, 1471 (2015)], while a pulsatile pattern of Rho and myosin proteins has been found in C. elegans embryo [Nishikawa et al., eLife 6, e30537 (2017)]. Here, we propose that these two seemingly distinct dynamic patterns are signatures of a single reaction-diffusion network involving active-Rho, inactive-Rho, actin, and myosin. We show that a small variation in the concentration of other ancillary proteins can give rise to different dynamical states from the same chemical network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call