Abstract

Ultraviolet (UV) radiation is a significant stress factor that harms life in both terrestrial and aquatic ecosystems in Antarctica. In summer (January–February), ground-level solar radiation regimes at the Antarctic Carlini Station (62°14'S, 58°40'W) on King George Island (South Shetland Islands) can be highly variable, depending on the presence of clouds. Spectrally-resolved underwater radiation regimes were measured at three study sites in the inner and outer Potter Cove nearby Carlini Station. The clear waters at Penon de Pesca allowed PAR, UV-A and UV-B radiation to penetrate deeply into the water column, expressed by z1% (i. e. 1%-depths) at 23–25 m, 20–22 m and 13–16 m, respectively, as well as by low attenuation coefficients of downward radiation (Kd). In contrast, turbid waters in the inner Potter Cove and at Penon Uno reduced the penetration of these three wavebands significantly. The photo-physiological mechanisms allowing macroalgae to acclimate to the incident gradients of PAR and UV radiation at Penon de Pesca were further elaborated by assessing photo-physiological data on the brown macroalga Desmarestia menziesii (Phaeophyceae), exposed to a PAR range between 15 and 130 μ mol photons m-2 s-1, either in the presence or absence of UV radiation (10.3 W m -2 UV-A and 0.73 W m -2 UV-B). PAM-fluorometry-based measurements revealed a similar decrease of the optimum quantum yield of photosystem II (PSII) under both PAR and UV radiation and a stronger effect of PAR over UV radiation in the regulation of maximum photosynthetic electron transport rate (ETRmax) as well as the photosynthetic light saturation (Ek). The down-regulation of the photochemistry of PSII by PAR as well as the reduction in the photosynthetic electron transport capacity (i.e.ETRmax) indicate important photoprotective mechanisms allowing D. menziesii to response effectively to a combination of PAR and UV stress in their upper subtidal habitat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.