Abstract
High entropy alloys (HEAs) are promising materials for various applications including nuclear reactor environments. Thus, understanding their behavior under irradiation and exposure to different environments is important. Here, two sets of near-equiatomic CoCrCuFeNi thin films grown on either SiO2/Si or Si substrates were irradiated at room temperature with 11.5 MeV Au ions, providing similar behavior to exposure to inert versus corrosion environments. The film grown on SiO2 had relatively minimal change up to peak damage levels above 500 dpa, while the film grown on Si began intermixing at the substrate–film interface at peak doses of 0.1 dpa before transforming into a multi-silicide film at higher doses, all at room temperature with minimal thermal diffusion. The primary mechanism is radiation-enhanced diffusion via the inverse Kirkendall and solute drag effects. The results highlight how composition and environmental exposure affect the stability of HEAs under radiation and give insights into controlling these behaviors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.