Abstract

The design of real-time safety assessment (RTSA) approaches in nonstationary environments is meaningful to reduce the possibility of significant losses. However, several challenging problems are needed to be well considered. The performance of existing approaches will be negatively affected in the settings of imbalanced drifting streams. In this case, the model design with the incremental update should also be explored. Furthermore, the query strategy should also be well-designed. This article investigates a dynamic submodular-based learning strategy to address such issues. Specifically, an efficient incremental update procedure is designed with the structure of the broad learning system (BLS), which is beneficial to the detection of concept drift. Furthermore, a novel dynamic submodular-based annotation with an activation interval strategy is proposed to select valuable samples in imbalanced drifting streams. The lower bound of annotation value is also proven theoretically with a novel drift adaption mechanism. Numerous experiments are conducted with the realistic data of JiaoLong deep-sea manned submersible. The experimental results show that the proposed approach can achieve better assessment accuracy than typical existing approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call