Abstract

In this paper, our aim is to further expand the use of the two-variable ( G ′ / G , 1 / G ) -expansion approach to a new coupled KdV and Z-K system, which has various significant applications in different fields of applied sciences. The KdV equation, along with shallow-water waves and long internal waves in oceans, basically explains how long, one-dimensional waves propagate in a variety of physical conditions. The study of coastal waves on the basis of the ocean is done using the Zakharov–Kuznetsov (Z-K) equation and this model is utilized to illustrate ion-acoustic wave propagation. By using this method, different forms of analytical solutions of the new coupled KdV (NCKdV) system and the new coupled Z-K (NCZ-K) system, such as solitons, multi-peak solitons, solitary waves, trigonometric, hyperbolic and rational functions and other wave solutions are constructed. The significant features of multi-peak solitons induced by the higher-order effects, including velocity variations, localization or periodicity attenuation and state transitions, are revealed. When the localization disappears then the multi-peak soliton becomes a periodic wave. The constructed solutions are also presented graphically having their applications in engineering, etc. The stability of the solution is examined by utilizing modulation instability. The results obtained show that the proposed technique is universal and efficient. In addition, this technique can also be applied to lots of other new coupled systems arising in other areas of applied sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.