Abstract

Dynamic structure of Soman diastereoisomers has been studied with the goal of obtaining accurate information to simulate molecular mechanisms of its action on living systems. The potential energy surface for internal rotation about the single P–O and O–C bonds has been constructed in terms of the Moller–Plesset second-order perturbation theory using 6-311G(d,p) basis set. The relative contributions of different conformers have been estimated by solving the vibrational problem according to the large-amplitude vibration model. The conformational dependences of the 4 J CF and 3 J CP coupling constants for the S,S and S,R diastereoisomers of Soman have been calculated at the FPT DFT B3LYP/6-311++G(2df,2p) level of theory. The calculated vibrationally averaged coupling constants have been compared with the available experimental data to determine the structure of the most toxic Soman stereoisomer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.