Abstract

BackgroundVariability in joint kinematics is necessary for adaptability and response to everyday perturbations; however, intrinsic neuromotor changes secondary to stroke often cause abnormal movement patterns. How these abnormal movement patterns relate to joint kinematic variability and its influence on post-stroke walking impairments is not well understood. ObjectiveThe purpose of this study was to evaluate the movement variability at the individual joint level in the paretic and non-paretic limbs of individuals post-stroke. MethodsSeven individuals with hemiparesis post-stroke walked on a treadmill for two minutes at their self-selected speed and the average speed of the six-minute walk test while kinematics were recorded using motion-capture. Variability in hip, knee, and ankle flexion/extension angles during walking were quantified with the Lyapunov exponent (LyE). Interlimb differences were evaluated. ResultsThe paretic side LyE was higher than the non-paretic side at both self-selected speed (Hip: 50%; Knee: 74%), and the average speed of the 6-min walk test (Hip: 15%; Knee: 93%). ConclusionDifferences in joint kinematic variability between limbs of persons post-stroke supports further study of the source of non-paretic limb deviations as well as the clinical implications of joint kinematic variability in persons post-stroke. The development of bilaterally-targeted post-stroke gait interventions to address variability in both limbs may promote improved outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call