Abstract

AbstractThe goal of this work is to study the dynamical structure of eddies of the Brazil‐Malvinas Confluence zone (BMC eddies) using direct velocity measurements carried out by Shipborne Acoustic Doppler Current Profiler during five oceanographic cruises performed in 2016–2022. In total, in situ data of 13 BMC eddies, including nine anticyclones and four cyclones are available. These data show that the orbital velocity in such eddies can reach 189 cm/s and their vertical structure is highly barotropic. In several eddies, the velocities exceeding 100 cm/s are observed down to a depth of 560 m and at a depth of 800 m they are still higher than 80 cm/s. The spatial structure of velocity and horizontal shear in the eddies is strongly asymmetric, with higher velocities in the southern part near the intense thermohaline BMC front. Altimetry data show qualitative agreement with in situ data, but underestimate the horizontal velocity shear and the maximum velocities at the periphery of the BMC eddies. We also use satellite altimetry and Argo float measurements to study these eddies, and estimate their impact on the thermohaline structure. The analysis shows that the eddies with orbital velocities exceeding 100 cm/s cause intense temperature and salinity anomalies reaching 7–9°C and 1 psu in anticyclones and −4°C and 0.8 psu in cyclones at 100–300 m depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.