Abstract

The preservation of concrete dams is a key issue for researchers and practitioners in dam engineering because of the important role played by these infrastructures in the sustainability of our society. Since most of existing concrete dams were designed without considering their dynamic behaviour, monitoring their structural health is fundamental in achieving proper safety levels. Structural Health Monitoring systems based on ambient vibrations are thus crucial. However, the high computational burden related to numerical models and the numerous uncertainties affecting the results have so far prevented structural health monitoring systems for concrete dams from being developed. This study presents a framework for the dynamic structural health monitoring of concrete gravity dams in the Bayesian setting. The proposed approach has a relatively low computational burden, and detects damage and reduces uncertainties in predicting the structural behaviour of dams, thus improving the reliability of the structural health monitoring system itself. The application of the proposed procedure to an Italian concrete gravity dam demonstrates its feasibility in real cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.