Abstract

Oxy- as well as deoxymyoglobin exhibit a pronounced temperature dependence of the quadrupole splitting of the heme iron as detected by conventional Mössbauer spectroscopy. With nuclear resonant forward scattering (NFS) of synchrotron radiation, which can be viewed as Mössbauer spectroscopy in the time domain, it is shown that this spectroscopic behavior, although it is phenomenologically similar in the two cases, is based on completely different physical mechanisms. It is demonstrated that stochastic fluctuations of the iron electric field gradient in MbO(2), which are due to the dynamic structural disorder of the FeO(2) moiety, are the reason for the temperature-dependent alterations of the coherent quantum beat pattern in the NFS spectra of MbO(2), in contrast to deoxyMb where transitions between orbital states of iron take place. This subtle spectroscopic difference cannot be inferred from conventional Mössbauer spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.