Abstract
The multiple scattering of shear waves and dynamic stress in a semi-infinite functionally graded material with a circular cavity is investigated, and the analytical solution of this problem is derived. The analytical solutions of wave fields are expressed by employing the wave function expansion method, and the expanded mode coefficients are determined by satisfying the boundary condition of the cavity. The image method is used to satisfy the traction-free boundary condition of the material structure. As an example, the numerical solution of the dynamic stress concentration factors around the cavity is also presented. The effects of the buried depth of the cavity, the incident wave number, and the nonhomogeneity parameter of materials on the dynamic stress concentration factors are analyzed. Analyses show that when the nonhomogeneity parameter of materials is <0, it has less influence on the maximum dynamic stress around the cavity; however, it has greater influence on the distribution of dynamic stress around the cavity. When the nonhomogeneity parameter of materials is >0, it has greater influence on both the maximum dynamic stress and the distribution of dynamic stress around the cavity, especially in the case that the buried depth is comparatively small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.