Abstract

The coupled magneto-mechanical model is established for the dynamic fracture problem for the high temperature superconductor (HTS). The superconductor E–J constitutive law is characterized by power law model where the critical current density is assumed to depend exponentially on the flux density. The cracked superconductor under dynamic loading are employed to investigate dynamic fracture behavior such as the variation of dynamic stress intensity factors (DSIFs) for different applied magnetic field amplitude, the thickness of HTS, and critical current density. To evaluate DSIFs for a type-II superconductor under alternating magnetic field, the flux pinning induced magnetoelasticity model proposed to evaluate DSIFs, and is implemented in conjunction with finite element method. The results show that the applied magnetic field amplitude, thickness of HTS, and critical current density are three important factors affecting the dynamic fracture behavior of the HTS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.