Abstract

The intermittent volatility of wind power integrated into the grid poses a great threat to the stable operation of power systems on the supply side. Conversely, large-scale charging of electric vehicles (EVs) also brings new challenges to dispatch on the demand side. In response, the randomness and temporal-spatial correlations of stochastic wind power generation are considered in this paper. Additionally, the EV charging infrastructure is studied. A dynamic stochastic optimal power flow (DSOPF) for wind farms and EVs integrated power system based on the chance-constrained programming model is proposed. An optimal dispatch scheme is obtained by solving the dynamic optimal power flow. After that, dynamic probabilistic power flow based on cumulants is performed under the scheme to obtain the probability distribution of state variables. The upper and lower bounds of chance constraints are adjusted according to the probability distribution function until they are all satisfied. Illustrative examples demonstrate the effectiveness of DSOPF for firming the variable wind energy, and EV charging is performed on the Institute of Electrical and Electronics Engineers systems. On this basis, different EV charging modes and the temporal-spatial correlations are specifically discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.