Abstract

In this paper, the natural vibration characteristics of elastically supported functionally graded material plate are investigated using the dynamic stiffness method (DSM). Power-law functionally graded (P-FG) plate, the material properties of which vary smoothly along the thickness direction following the power-law function, that has been used for the analysis. Classical plate theory and Hamilton’s principle are used for deriving the governing differential equation of motion and associated edge conditions for P-FG plate supported by elastic foundation. During the formulation of dynamic stiffness (DS) matrix, the concepts of rotary inertia and neutral surface are implemented. Wittrick–Williams (W-W) algorithm is used as a solving technique for the DS matrix to compute eigenvalues. The results thus obtained by DSM for the isotropic, P-FG plate, and the P-FG plate with elastic foundation compare well with published results that are based on different analytical and numerical methods. The comparisons indicate that this approach is very accurate. Furthermore, results are provided for elastically supported P-FG plate under four different considerations in order to see the differences in frequencies with the inclusion or exclusion of neutral surface and/or rotary inertia. It is noticed that the inclusion of rotary inertia and neutral surface influences the eigenvalues of P-FG plate, and that cannot be discounted. The study also examines the influence of plate geometry, material gradient index, edge conditions, and elastic foundation modulus on the natural frequency of P-FG plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call