Abstract

We numerically study the dynamic state of a low-Reynolds-number turbulent channel flow from the viewpoints of symbolic dynamics and nonlinear forecasting. A low-dimensionally (high-dimensionally) chaotic state of the streamwise velocity fluctuations emerges at a viscous sublayer (logarithmic layer). The possible presence of the chaotic states is clearly identified by orbital instability-based nonlinear forecasting and ordinal partition transition network entropy in combination with the surrogate data method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call