Abstract

This paper investigates the joint problems of dynamic state estimation of algebraic variables (voltage and phase angle) and generator states (rotor angle and frequency) of nonlinear differential algebraic equation (NDAE) power network models, under uncertainty. Traditionally, these two problems have been decoupled due to complexity of handling NDAE models. In particular, this paper offers the first attempt to solve the aforementioned problem in a coupled approach where the algebraic and generator states estimates are simultaneously computed. The proposed estimation algorithm herein is endowed with the following properties: <i>(i)</i> it is fairly simple to implement and based on well-understood Lyapunov theory; <i>(ii)</i> considers various sources of uncertainty from generator control inputs, loads, renewables, process and measurement noise; <i>(iii)</i> models phasor measurement unit installations at arbitrary buses; and <i>(iv)</i> is computationally less intensive than the decoupled approach in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.