Abstract
The massive integration of variable and unpredictable Renewable Energy Sources (RES) and new types of load consumptions increases the dynamic and uncertain nature of the electricity grid. Emerging interests have focused on improving the monitoring capabilities of network operators so that they can have accurate insight into a network’s status at the right moment and predict its future trends. Though state estimation is crucial for this purpose to trigger control functions, it has been used mainly for steady-state analysis. The need for dynamic state estimation (DSE), however, is increasing for real-time control and operation. This paper addresses the important role of DSE over conventional static-state estimation in this new distribution network context. Computational burden mitigates the state-of-the-art utilizations of DSE in real large-scale networks, although DSE was introduced several decades ago. This paper the unscented Kalman filter (UKF) to alleviate computational burden with DSE. The UKF-based approach does not use a linearization procedure and thus outperforms the conventional Extended Kalman Filter based approach to cope with non-linear models. The performance of the UKF method is investigated with a simulation of an 18-bus distribution network on the real-time digital simulator (RTDS) platform. A distribution network with considerable integration of renewable energy production is used to evaluate the UKF-based DSE approach under different types of events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Smart Grid and Clean Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.