Abstract

Vertical axis wind turbines (VAWTs) are a type of wind turbines, mainly useful for urban and residential areas to produce electricity. It has some advantages over Horizontal axis wind turbines in terms of costs and maintenances. Dynamic Stalling is a common feature of these VAWTs in unsteady flow conditions. In fact, dynamic stalling is regarded as one of the prior obstructions for the improved aerodynamic features of VAWTs. Thus, it is important to understand the effects of dynamic stalling on it. This paper aims to present the dynamic stall investigation of a two-dimensional VAWT blade, i.e. NACA 0012 at the low-speed condition. The phenomenon was simulated using computational fluid dynamics (CFD) techniques to capture the leading-edge vortex (LEV) and trailing edge vortex on the airfoil due to unsteady flow conditions. ANSYS FLUENT with manually hooked UDF subroutine was used to simulate the numerical results which were later compared to experimental data. Unsteady Reynold Average Navier Stokes (URANS) SST k − ω modeling was used to capture the dynamic stalling in a more detailed fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.