Abstract

The paper is concerned with the conditions of dynamic (asymptotic) stability of steady states in unbranched metabolic pathways. The stationary flux in such pathways is generally determined by the concentration of the end product due to the effector action of this product on the reactions proceeding in its synthetic pathway. The delay in feedback circuits causes violation of dynamic stability at large static stabilization factors. A methods permitting analytic estimation of the critical stabilization factor is suggested. Sufficient and necessary conditions for asymptotic stability of the steady state in the general case of the pathway with a single feedback loop have been established. Mechanisms for maintenance of the steady state asymptotic stability at large static stabilization factors are studied. It has been shown that the range of dynamic stability can be widened greatly, if the pathway contains one or two reactions (but not more) of relatively small effective rate constants. Short strong negative feedback is also found to extend considerably the range of dynamic stability of the pathway. The feedback is more effective if it acts on the reaction with small effective rate constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call