Abstract
This paper presents an analysis for the dynamic stability of sandwich beams/wide plates subjected to periodic axial loads. The formulation of the problem is done by use of the Extended High-order Sandwich Panel Theory (EHSAPT). The equations of motion are derived from Hamilton’s principle and are expressed in terms of seven generalized displacements. A sandwich panel with simply supported edges is studied as an example, and the equations of motion for a given harmonic n are further derived. Two time-variations for the axial forces, namely, harmonic axial forces and step-wise periodic axial forces, are considered in this work. By considering the features of these two periodic load profiles, Floquet theory and Bolotin’s method are adopted to perform the dynamic stability analysis. Sandwich panels with different face-to-core thickness ratios are studied. Stability maps for varying frequency and amplitude of the forces are presented. Numerical examples show that when a sandwich panel is subjected to periodic loads, it is possible that it can experience dynamic instability even when the dynamic loads are much lower than the static critical loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.