Abstract

This paper presents an analysis of dynamic stability of an annular plate with a periodically varying spin rate subjected to a stationary in-plane edge load. The spin rate of the plate is characterized as the sum of a constant speed and a small, periodic perturbation. Due to this periodically varying spin rate, the plate may bring about parametric instability. In this work, the initial stress distributions caused by the periodically varying spin rate and the in-plane edge load are analyzed first. The finite element method is applied then to yield the discretized equations of motion. Finally, the method of multiple scales is adopted to determine the stability boundaries of the system. Numerical results show that combination resonances take place only between modes of the same nodal diameter if the stationary in-plane edge load is absent. However, there are additional combination resonances between modes of different nodal diameters if the stationary in-plane edge load is present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.