Abstract

This study investigates dynamic stability in transverse parametric vibrations of an axially accelerating tensioned beam of Timoshenko model on simple supports. The axial speed is assumed as a harmonic fluctuation about the constant mean speed. The Galerkin method is applied to discretize the governing equation into a finite set of ordinary differential equations. The method of averaging is applied to analyze the instability phenomena caused by subharmonic and combination resonance. Numerical examples demonstrate the effects of the mean axial speed, bending stiffness, rotary inertia and shear modulus on the instability boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call