Abstract

This paper presents a method to find the dynamic stability margin of power system using genetic algorithm. Power systems are subjected to wide range of operating conditions. Modern power systems are equipped with fast-acting protective devices for transient stability problems. Hence, power systems are operated above the transient stability limit. The dynamic behaviour of system can be evaluated using small signal stability analysis. The maximum loading to which the system can be subjected can be obtained by observing the eigenvalue variations of the system under different loading conditions. The loading for which system exhibits a pair of imaginary eigenvalues is the maximum loading limit. Beyond this limit, the system will become unstable. The loading for which the power system exhibits imaginary eigenvalues is evaluated by using genetic algorithm. The dynamic stability margin is evaluated for a 3-machine 9-bus system. The efficacy of the proposed method is tested for the power system including conventional power system stabilizers (CPSS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.