Abstract

The destabilizing effect of high gain in voltage regulators persists in power system. The power oscillations of small magnitude and high frequency, which often persisted in power system, present the limitation to the amount of power transmitted within the system. In this paper, a linearized Heffron–Phillips model of a single machine infinite bus (SMIB) is developed using different controllers like fuzzy logic power system stabilizer (FPSS), PID controller, particle swarm optimization (PSO)-based PID controller for analyzing the stability enhancement in power system. For FPSS, speed deviation and acceleration deviation are taken as inputs. Comparison of the effectiveness (steady-state error, ess, overshoot (Mp), and settling time (ts) for a different controller has been done. The performance of the SMIB system using FPSS has been analyzed when comparing with conventional controllers used in SMIB. Similarly the PSO is done using different iterations on conventional PID controller. The results of the simulation show that for low frequency oscillations, FPSS is more effective in damping compared to conventional controllers, and similarly PSO-based PID controller is more effective than a conventional PID controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.