Abstract
In this paper, stability and bifurcations in a simply supported rotating shaft are studied. The shaft is modeled as an in-extensional spinning beam with large amplitude, which includes the effects of nonlinear curvature and inertia. To include the internal damping, it is assumed that the shaft is made of a viscoelastic material. In addition, the torsional stiffness and external damping of the shaft are considered. To find the boundaries of stability, the linearized shaft model is used. The bifurcations considered here are Hopf and double zero eigenvalues. Using center manifold theory and the method of normal form, analytical expressions are obtained, which describe the behavior of the rotating shaft in the neighborhood of the bifurcations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.