Abstract

In this paper, a first-known dynamic stability analysis of carbon nanotube-reinforced functionally graded (CNTR-FG) cylindrical panels under static and periodic axial force by using the mesh-free kp-Ritz method is presented. The cylindrical panels are reinforced by single-walled carbon nanotubes (SWCNTs) with different types of distributions, i.e. uniform and three kinds of functionally graded distributions of carbon nanotubes along thickness direction of the panels. Eshelby–Mori–Tanaka approach is employed to estimate effective material properties of the resulting nanocomposite panels. By applying the Ritz minimization procedure to the energy expressions, a system of Mathieu–Hill equations is formulated. Then the principal instability regions are analyzed through Bolotin’s first approximation. Detailed parametric studies have been carried out to reveal the influences of volume fraction of carbon nanotubes, edge-to-radius ratio and radius-to-thickness ratio. In addition, effects of different boundary conditions and types of distributions of carbon nanotubes are examined in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.