Abstract
AbstractThis paper presents an experimental and numerical study on the dynamic splitting tensile properties of ceramic aggregate concrete (CAC) that is composed of ceramic aggregates and mortar matrix. The maximum ceramic aggregate diameter includes 0.3, 0.6, and 0.9 cm. A series of split‐tension tests of CAC specimens were conducted first. Parametric studies such as the effects of aggregate size and strain rate, on the splitting tensile behaviors of CAC were presented in terms of tensile strength, stress–strain curve, failure patterns, and so on. Subsequently, we developed a three‐dimensional two‐phase mesoscale model for CAC, where the random distribution and size characteristics of ceramic aggregates in concrete were fully considered. Employing the developed mesoscopic model, systematic mesoscopic simulations were performed to investigate the mesoscopic responses of CAC under dynamic split‐tension loadings. Results indicated that the mechanic properties and cracking behaviors of CAC are associated with many factors, such as aggregate diameter, aggregate distribution and strain rate. Besides, there was a good agreement between the tested and numerical results, demonstrating that the developed mesoscale model has a significant reliability and potential in simulating the mechanical properties of CAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.