Abstract

Enantioselective catalytic chiral reactions are important to all aspects of life sciences. Here we present the first utilization of the chiral induced spin selectivity (CISS) effect to form, enantioselectively, sp3 chiral centers in catalytic reactions, starting from achiral reagents. The enantiomeric symmetry is broken by affecting spin-controlled different reaction dynamics toward each of the enantiomers, using magnetic substrates. Two catalytic reactions are used for this purpose: a sulfide to sulfoxide oxidation and a Diels-Alder cycloaddition reaction, both catalyzed by hematite (Fe2O3). The proof of concept was evaluated by circular dichroism measurements and by chiral high-performance liquid chromatography techniques. These results provide direct evidence that the directionality of the electron spin can break enantiomeric symmetry, enabling asymmetric catalysis without using chiral reagents, solvents, or catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.