Abstract

We employ the recently proposed plaquette basis to investigate static and dynamic properties of isotropic two-leg Heisenberg spin ladders. Simple noninteracting multiplaquette states provide a remarkably accurate picture of the energy/site and dynamic spin response of these systems. Insights afforded by this simple picture suggest a very efficient truncation scheme for more precise calculations. When the small truncation errors are accounted for using recently developed contractor renormalization techniques, very accurate results requiring a small fraction of the computational effort of exact calculations are obtained. These methods allow us to determine the energy/site, gap, and spin response of $2\ifmmode\times\else\texttimes\fi{}16$ ladders. The former two values are in good agreement with density-matrix renormalization-group results. The spin-response calculations show that nearly all the strength is concentrated in the lowest triplet level and that coherent many-body effects enhance the response/site by nearly a factor of 1.6 over that found for $2\ifmmode\times\else\texttimes\fi{}2$ systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.