Abstract

The rapid growth of wireless communication technology has resulted in the increasing demand on spectrum resources. However, according to a recent study, most of the allocated frequency experiences significant underutilization. One important issue associated with spectrum management in heterogeneous cognitive radio networks is: How to appropriately allocate the spectrum to secondary sender–destination (S–D) pair for sensing and utilization. In this paper, the authors investigate the spectrum allocation problem under a more practical scenario where the heterogeneous characteristics of both the secondary S–D and primary channels are taken into consideration. With the objective to maximize the achievable throughput for secondary S–D, we formulate the spectrum allocation problem as a linear integer optimization problem under spectrum availability constraint, spectrum span constraint, and interference free constraint. This problem is proven to be Non-deterministic Polynomial (NP)-complete, and a recent result in theoretical computer science called randomized rounding algorithm with polynomial computational complexity is developed to find the $\rho$ -approximation solution. Evaluation results show that our proposed algorithm can achieve a close-to-optimal solution at a low level of computation complexity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call