Abstract
Spectrum efficiency and energy efficiency are two critical issues in designing wireless networks. Through dynamic spectrum access, cognitive radios can improve the spectrum efficiency and capacity of wireless networks. On the other hand radio frequency (RF) energy harvesting has emerged as a promising technique to supply energy to wireless networks and thereby increase their energy efficiency. Therefore, to achieve both spectrum and energy efficiencies, the secondary users in a cognitive radio network (CRN) can be equipped with the RF energy harvesting capability, and such a network can be referred to as an RF-powered cognitive radio network. In this article we provide an overview of the RF-powered CRNs and discuss the challenges that arise for dynamic spectrum access in these networks. Focusing on the trade-off among spectrum sensing, data transmission, and RF energy harvesting, we then discuss the dynamic channel selection problem in a multi-channel RF-powered CRN. In the RF-powered CRN a secondary user can adaptively select a channel to transmit data when the channel is not occupied by any primary user. Alternatively, the secondary user can harvest RF energy for data transmission if the channel is occupied. The optimal channel selection policy of the secondary user can be obtained by formulating a Markov decision process (MDP) problem. We present some numerical results obtained by solving this MDP problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.