Abstract

We introduce dynamic speckle holography, a new technique that combines imaging and scattering to measure three-dimensional maps of displacements as small as ten nanometers over several centimeters, greatly extending the capabilities of traditional imaging systems. We attain this sensitivity by imaging speckle patterns of light collected at three scattering angles and measuring the decay in the temporal correlation due to local motion. We use dynamic speckle holography to measure the strain field of a colloidal gel undergoing fracture and establish the surprising role of internal tension in driving the fracture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call