Abstract

Flux balance analysis (FBA) is a crucial method to analyze large-scale constraint-based metabolic networks and computing design strategies for strain production in metabolic engineering. However, as it is often non-straightforward to obtain such design strategies to produce valuable metabolites, many tools have been proposed based on FBA. Among them, GridProd, which divides the solution space into small squares by focusing on the cell growth rate and the target metabolite production rate to efficiently find the reaction deletion strategies, was extended to CubeProd, which divides the solution space into small cubes. However, as GridProd and CubeProd naively divide the solution space into equal sizes, even places where solutions are unlikely to exist are examined. To address this issue, we introduce dynamic solution space division methods based on CubeProd for faster computing by avoiding searching in places where the solutions do not exist. We applied the proposed method DynCubeProd to iJO1366, which is a genome-scale constraint-based model of Escherichia coli. Compared with CubeProd, DynCubeProd significantly accelerated the calculation of the reaction deletion strategy for each target metabolite production. In addition, under the anaerobic condition of iJO1366, DynCubeProd could obtain the reaction deletion strategies for almost 40% of the target metabolites that the elementary flux vector-based method, which is one of the most effective methods in existence, could not. The developed software is available on https://github.com/Ma-Yier/DynCubeProd.

Highlights

  • Metabolic engineering is a DNA recombination-based technology proposed in 1991 to improve the designated substance production and the cell properties by manipulating and introducing specific biochemical reactions (Bailey, 1991; Stephanopoulos et al, 1998)

  • We developed an algorithm DynCubeProd for calculating reaction deletion strategies that achieve growth coupling of designated target metabolite production in constraint-based models of metabolic networks

  • Because DynCubeProd is a method obtained by improving CubeProd (Tamura, 2021a), we provide an overview of CubeProd and explain the difference between DynCubeProd and CubeProd

Read more

Summary

Introduction

Metabolic engineering is a DNA recombination-based technology proposed in 1991 to improve the designated substance production and the cell properties by manipulating and introducing specific biochemical reactions (Bailey, 1991; Stephanopoulos et al, 1998). Current metabolic engineering technology focuses on the utilization of microorganisms. Metabolic pathways in organisms are often represented by metabolic networks, in which nodes represent metabolite molecules and biochemical reactions. DynCubeProd reactions) cannot be directly connected, and a metabolite must be connected to at least two biochemical reactions. The biochemical reactions can be irreversible or reversible. Nodes of external metabolites form the input and output nodes of the entire network

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call