Abstract

Relationships between solid-state, densification and compact properties of theophylline monohydrate (TMO), a mixture of forms (TMIX), and anhydrous polymorphs I (TA-I) and II (TA-II) were evaluated. Solid-state identification of powders and compacts was accomplished by powder X-ray diffraction. A compaction simulator was used to assess deformation behaviour of the powders and to prepare compacts. Porosity and tensile strength of the compacts were determined after 1, 24, and 168 h of storage at 22% relative humidity. TA-II was stable, whereas TA-I, TMIX and TMO partially transformed to the TA-II form during storage . All theophylline modifications primarily deformed by plastic flow. Increased water content decreased resistance towards densification and deformation of TMIX and TMO when compared to TA-II or TA-I, demonstrating viscoelasticity. Permanent densification behaviours of TMIX and TMO approached to that of TA-II during storage. Tensile strength of the different theophylline forms were practically equal after 1 h of storage. Tensile strength and porosity of TMIX and TMO compacts increased during the storage. Dynamic solid-state transformations from TMO, TMIX and TA-I to TA-II were associated with parallel changes in their densification and compact properties. The extent of these changes was also dependent on the materials' water content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call